Retinoic acid induces down-regulation of Wnt-3a, apoptosis and diversion of tail bud cells to a neural fate in the mouse embryo

نویسندگان

  • Alisa S.W Shum
  • Leo L.M Poon
  • Wilson W.T Tang
  • Tsuyoshi Koide
  • Billy W.H Chan
  • Yun-Chun G Leung
  • Toshihiko Shiroishi
  • Andrew J Copp
چکیده

The tail bud comprises the caudal extremity of the vertebrate embryo, containing a pool of pluripotent mesenchymal stem cells that gives rise to almost all the tissues of the sacro-caudal region. Treatment of pregnant mice with 100 mg/kg all-trans retinoic acid at 9.5 days post coitum induces severe truncation of the body axis, providing a model system for studying the mechanisms underlying development of caudal agenesis. In the present study, we find that retinoic acid treatment causes extensive apoptosis of tail bud cells 24 h after treatment. Once the apoptotic cells have been removed, the remaining mesenchymal cells differentiate into an extensive network of ectopic tubules, radially arranged around the notochord. These tubules express Pax-3 and Pax-6 in a regionally-restricted pattern that closely resembles expression in the definitive neural tube. Neurofilament-positive neurons subsequently grow out from the ectopic tubules. Thus, the tail bud cells remaining after retinoic acid-induced apoptosis appear to adopt a neural fate. Wnt-3a, a gene that has been shown to be essential for tail bud formation, is specifically down-regulated in the tail bud of retinoic acid-treated embryos, as early as 2 h after retinoic acid treatment and Wnt-3a transcripts become undetectable by 10 h. In contrast, Wnt-5a and RAR-gamma are still detectable in the tail bud at that time. Extensive cell death also occurs in the tail bud of embryos homozygous for the vestigial tail mutation, in which there is a marked reduction in Wnt-3a expression. These embryos go on to develop multiple neural tubes in their truncated caudal region. These results suggest that retinoic acid induces down-regulation of Wnt-3a which may play an important role in the pathogenesis of axial truncation, involving induction of widespread apoptosis, followed by an alteration of tail bud cell fate to form multiple ectopic neural tubes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of retinoic acid on neural tube development in chick embryo

retinoic acid is one of the derivatives of vitamin A.it is used for treatment of dermatitis,but it has different teratogenic effects on developing organs depending on the different stages of embryonic life.neural  tube is made of two different parts:primary neural tube originated from embryo germinal layer and and secondary neural tube originated from tail bud.the persent study was designed to ...

متن کامل

The effect of Fibroblast Growth Factor-2(FGF-2) and retinoic acid on differentiation of mouse embryonic stem cells into neural cells

Introduction: Embryonic Stem (ES) cells as pluripotent cells derived from the inner cell mass of blastula can differentiate to neural cells in vitro and this property is valuable in studies of neurogenesis and in the generation of donor cells for transplantation. In this regard, the propose of this research, was the study of the role of two important factors in the development of neural syst...

متن کامل

Study on Effect of Head, Tail, and Limbud extracts of Mouse on Differentiation of Hair Follicle Stem Cells to Neural cells

Introduction: Adult stem cells are the group of cells which conserve their nature in tissues and organs among other cells. In recent years, the researchers reported the existence of stem cells on the Bulge of hair follicles near to the smooth muscle. It is possible to differentiate these stem cells to neural cells by induction of Shh, FGF, and RA factors. Because of existence of these factors ...

متن کامل

9-cis-Retinoic Acid and 1,25-dihydroxy Vitamin D3 Improve the Differentiation of Neural Stem Cells into Oligodendrocytes through the Inhibition of the Notch and Wnt Signaling Pathways

Background: Differentiating oligodendrocyte precursor cells (OPCs) into oligodendrocytes could be improved by inhibiting signaling pathways such as Wnt and Notch. 9-cis-retinoic acid (9-cis-RA) and 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) can ameliorate oligodendrogenesis. We investigated whether they could increase oligodendrogenesis by inhibiting the Wnt and Notch signaling pathways.Methods: Co...

متن کامل

Quercetin protects PC-12 cells against hypoxia injury by down-regulation of miR-122

Objective(s): Impairment of nerve cells of brain induced by hypoxia results in energy-deprivation and dysfunction, which accompanies with neurons apoptosis. Improving function of nerve cells is important for treating cerebral anoxia. This study aimed to investigate the role of Quercetin (Quer) in hypoxia-induced injury of pheochromocytoma (PC-12) cells. Materials and Methods: PC-12 cells were c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mechanisms of Development

دوره 84  شماره 

صفحات  -

تاریخ انتشار 1999